Вне шанса? Устойчивость результатов в онлайн-покере

Главный вопрос в широко распространенных спорах о законности покера и соответствующем налогообложении выигрышей заключается в том, следует ли считать покер игрой мастерства или игрой на удачу.

Главный вопрос в широко распространенных спорах о законности покера и соответствующем налогообложении выигрышей заключается в том, следует ли считать покер игрой мастерства или игрой на удачу. Чтобы проинформировать эту дискуссию, мы представляем анализ роли навыков в игре игроков в онлайн-покер, используя большую базу данных с сотнями миллионов наблюдений за комбинациями игроков в кэш-играх на реальные деньги на трех различных уровнях ставок. Мы обнаружили, что игроки, чья ранее прибыльность находилась в верхних (нижних) децилях, работают лучше (хуже) и с гораздо большей вероятностью попадут в верхние (нижние) децили результатов следующего периода времени. Регрессионный анализ производительности на основе исторической производительности и других косвенных показателей, связанных с навыками, предоставляет дополнительные доказательства устойчивости и предсказуемости.Моделирование указывает на то, что навыки преобладают над шансами, когда результативность измеряется более чем в 1500 разыгранных рук.

Образец цитирования:Potter van Loon RJD, van den Assem MJ, van Dolder D (2015) Beyond Chance? Устойчивость результатов в онлайн-покере. PLoS ONE 10 (3): e0115479. https://doi.org/10.1371/journal.pone.0115479

Академический редактор:Матьяз Перк, Университет Марибора, СЛОВЕНИЯ

Поступила:23 августа 2014 г .;Принята в печать:24 ноября 2014 г .;Опубликовано:2 марта 2015 г.

Авторское право:© 2015 Potter van Loon et al. Это статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии указания автора и источника.

Доступность данных:все соответствующие данные находятся в документе.

Финансирование:Финансовую поддержку этому проекту оказали Университет Эразма в Роттердаме, Исследовательский институт управления Эразмус (ERIM) и Институт Тинбергена. DvD получил дополнительную поддержку через Нидерландскую организацию научных исследований (грант VICI NWO 453-06-001) и Совет по экономическим и социальным исследованиям через Сеть комплексных поведенческих наук (награда № ES / K002201 / 1). Финансирующие организации не играли никакой роли в дизайне исследования, сборе и анализе данных, принятии решения о публикации или подготовке рукописи.

Конкурирующие интересы:авторы заявили, что никаких конкурирующих интересов не существует.

Вступление

Покер - самая популярная карточная игра в мире. Ежедневно сотни тысяч людей играют в покер на реальные деньги в Интернете (Online Poker Traffic Reports). В 2013 году онлайн-покер-румы принесли примерно 2,8 миллиарда евро валового выигрыша (H2 Gambling Capital). О популярности игры также свидетельствуют многочисленные телерепортажи о крупных покерных турнирах и количество участников в этих турнирах. Например, в 2014 году 6 683 человека заплатили 10 000 долларов за участие в самом известном покерном турнире - главном событии Мировой серии покера в Лас-Вегасе.

В то же время широко распространены споры о законности покера и соответствующем налогообложении выигрышей. Ключевой вопрос в дебатах заключается в том, следует ли считать покер азартной игрой или игрой мастерства. В отличие от игр на ловкость, организация или игра в азартные игры запрещены или ограничены во многих странах. Кроме того, во многих странах существует отдельный налог на азартные игры, в то время как деньги, выигранные в игре на ловкость, обычно облагаются обычным подоходным налогом. Келли, Дхар и Вербист [1] составили карту законодательства и прецедентного права по покеру для разных стран и показали, что существует большое разнообразие. Регулирование США даже различается в зависимости от штата. В последние годы в нескольких юридических документах утверждается, что покер - это игра, требующая навыков, и ее следует признать таковой [2–4].

Власти часто менее снисходительно относятся к онлайн-покеру, чем к живому. В США, например, Закон о борьбе с незаконными азартными играми в Интернете (UIGEA), принятый в 2006 году, оказал серьезное влияние: хотя этот закон не запрещал азартные игры в Интернете, он запрещал перевод средств в компании, занимающиеся азартными играми в Интернете, и из них. Поскольку для игры в онлайн-покер необходимо внести деньги, этот закон фактически объявил онлайн-покер незаконным. Если бы покер рассматривался как игра с навыками, а не азартная игра, это могло бы стать аргументом в пользу исключения онлайн-покерного бизнеса из-под действия UIGEA [4].

Компонент навыков в покере рассматривался в двух различных направлениях. Один из треков фокусируется на развитии и вычислении показателей навыков и восходит к Кадане [5]. Борм и ван дер Генугтен [6], Дриф, Борм и ван дер Генугтен [7–9], а также Хендрикс и др.. [10] предлагают меры, которые сравнивают выступления разных типов игроков, включая информированного гипотетического игрока, который точно знает карты, которые будут вытянуты. Однако использование их подхода ограничено относительно простыми играми. Из-за практически бесконечного числа возможных игровых ситуаций, которые возникают в результате множества различных вариантов выбора (ставок), которые есть у игроков, и из-за важности скрытых убеждений игроков высшего порядка, этот подход не может быть точно реализован для наиболее популярной формы игры. покер, безлимитный техасский холдем. Тем не менее, даже для простых вариантов покера различные исследования показывают значительную степень мастерства. Хейбек [11] рассматривает различные виды предлагаемых критериев оценки навыков.

Во втором направлении исследований используется более эмпирически ориентированный подход. Точно так же в этих статьях предполагается, что покер включает в себя компонент навыков. Larkey et al . [12], Кэбот и Ханнум [2] провели крупномасштабное моделирование с различными заранее заданными игровыми стратегиями и обнаружили, что их более сложные стратегии работают лучше. ДеДонно и Деттерман [13] провели эксперименты со студентами-испытуемыми и продемонстрировали, что группа игроков, получивших стратегические инструкции во время сеанса, превзошла контрольную группу. Силер [14] анализирует данные онлайн-покера и устанавливает, что результативность зависит от стиля игры, и что различия в стиле и производительности между игроками уменьшаются с увеличением уровня ставок.

В том же духе, что и некоторые из анализов в настоящей статье, Кросон, Фишман и Поуп [15] и Левитт и Майлз [16] исследуют, есть ли настойчивость в игре игроков в покер. Кросон, Фишман и Поуп анализируют, насколько хорошо игроки, занявшие 18-е место в турнире с высокими ставками, входят в число 18 финалистов следующего крупного турнира, и сравнивают свои результаты с результатами аналогичного анализа для профессиональных игроков. гольф. Они обнаружили, что предыдущие финиши предсказывают текущие финиши, и что различия в навыках игроков в покер в их выборке аналогичны различиям между игроками в гольф. Левитт и Майлз анализируют набор данных, содержащий полные рейтинги всех игроков, принявших участие в турнире Мировой серии покера 2010 года. Они сообщают, что игроки, которые априори классифицированный как особо опытный, действительно превзошел других игроков.

Далее мы анализируем роль навыков в игре игроков в онлайн-покер, используя большую базу данных с 456 миллионами наблюдений за комбинациями игроков в кэш-играх на реальные деньги на трех разных уровнях ставок. Онлайн-покер кажется наиболее очевидным источником данных, потому что дискуссия о шансах и навыках особенно ориентирована на вопросы, касающиеся законности интернет-покера и налогообложения выигрышей в онлайн-игре. Более того, огромный объем доступных данных позволяет проводить эффективный анализ.

Мы определяем умение как все, что влияет на производительность игрока, кроме случая. В чистой азартной игре ожидаемый выигрыш каждого игрока равен нулю (при отсутствии затрат), и обычно в их показателях нет постоянства или положительной автокорреляции: результаты игроков за определенный период не зависят от результатов за любой другой период. Если производительность предсказуема, игра включает в себя элементы мастерства.

Наши результаты показывают, что навыки являются важным фактором. Когда мы разбиваем нашу выборку на подпериоды, мы обнаруживаем, что игроки, результативность которых находилась в верхних (нижних) децилях предыдущего периода, работают лучше (хуже) и с большей вероятностью окажутся в верхних (нижних) децилях текущего периода. Регрессионный анализ производительности на основе прошлой производительности и других показателей навыков подкрепляет это свидетельство настойчивости в производительности.

С юридической точки зрения ключевой вопрос заключается в том, преобладает ли мастерство над шансом, то есть является ли покер скорее игрой мастерства, чем игрой на удачу. Ответ на этот вопрос во многом зависит от продолжительности и интенсивности игры, так как влияние случая уменьшается с количеством рук и в конечном итоге сводится на нет в долгосрочной перспективе. («Рука» - это игра, которая проводится между двумя последующими тасованиями колоды: раздача карт, ставки и раздача банка.) Наши симуляции показывают, что навыки преобладают примерно после 1500 рук.

Данные и описательная статистика

Для нашего анализа мы используем данные о кэш-играх на реальные деньги («кэш-игры»), проводимых на одном из крупных покерных сайтов. Мы рассматриваем безлимитный (NL) техасский холдем только потому, что этот вариант на сегодняшний день является самой популярной формой покера во всем мире. Наши данные поступают из онлайн-сервиса HHDealer. В последние годы несколько компаний специализируются на сборе и торговле так называемыми «историями рук» в онлайн-покер-румах. С помощью программных приложений они постоянно собирают информацию о руках, сыгранных за столами для онлайн-покера. Многие игроки покупают эти данные, чтобы получить информацию о стилях игры других игроков. Из-за ограниченных ресурсов провайдеры истории рук не могут хранить данные о каждой раздаче, сыгранной онлайн. Из веб-сайтов, ответивших на наши запросы,HHDealer смог обеспечить наибольшее количество рук в течение непрерывного периода в двенадцать месяцев. Мы приобрели все доступные данные по играм, в которые играли с тремя конкретными уровнями ставок в период с октября 2009 года по сентябрь 2010 года. В покере уровни ставок различаются размером маленькой и большой ставки блайнда. Чтобы обосновать наш анализ на разных уровнях ставок, мы выбрали данные из так называемых «низких», «средних» и «высоких» игр с размером большого блайнда 0,25, 2 и 10 долларов соответственно. Для средних лимитов данные, которые мы получили, также содержат раздачи, сыгранные в сентябре 2009 года; мы относимся к ним так, как если бы они были воспроизведены в октябре 2009 года.Уровни ставок различаются по размеру малого и большого блайндов. Чтобы обосновать наш анализ на разных уровнях ставок, мы выбрали данные из так называемых «низких», «средних» и «высоких» игр с размером большого блайнда 0,25, 2 и 10 долларов соответственно. Для средних лимитов данные, которые мы получили, также содержат раздачи, сыгранные в сентябре 2009 года; мы относимся к ним так, как если бы они были воспроизведены в октябре 2009 года.Уровни ставок различаются по размеру малого и большого блайндов. Чтобы обосновать наш анализ на разных уровнях ставок, мы выбрали данные из так называемых «низких», «средних» и «высоких» игр с размером большого блайнда 0,25, 2 и 10 долларов соответственно. Для средних лимитов данные, которые мы получили, также содержат раздачи, сыгранные в сентябре 2009 года; мы относимся к ним так, как если бы они были воспроизведены в октябре 2009 года.

Итоговый набор необработанных данных содержит в общей сложности 76,9 миллиона различных рук. Среднее количество игроков, участвующих в раздаче, составляет 5,9, что дает 456,1 миллиона различных наблюдений за раздачей игроков. Из них 190,6 миллиона (41,8%) - это игры с низкими ставками, 229,1 миллиона (50,2%) - со средними ставками, а 36,4 миллиона (8,0%) - с высокими ставками. Наименьшее количество наблюдений, зарегистрированных за месяц, было в феврале 2010 года (17,3 миллиона, или 3,8%) и связано с изменением программного обеспечения, которое временно затруднило сбор данных. Пик пришелся на январь 2010 года (57,9 млн или 12,7%).

Таблица 1 суммирует данные. Наша выборка содержит более 600 000 различных игроков (мы интерпретируем каждую учетную запись как отдельного игрока). Около 457 000 из них сыграли хотя бы одну руку на нашем уровне низких лимитов (0,25 доллара США большого блайнда), 230 000 сыграли в игре со средними ставками (2 больших блайнда) и 34 000 сыграли в игре с высокими ставками (10 больших блайндов). Они редко переключались между этими тремя уровнями: почти все руки (96%) были разыграны на уровне ставок, на котором игрок играл наиболее часто. Меньшая часть игроков (17%) была активна более чем на одном из трех уровней, но даже эти игроки по-прежнему играли 90 процентов своих рук на самом любимом уровне.

Игроки, которые участвовали в игре с высокими ставками, сыграли в среднем 1085 рук на этом конкретном уровне. Для средних и малых лимитов это число составляет 996 и 417 соответственно. Среднее количество рук, сыгранных на трех уровнях вместе, составляет 746. У разных игроков есть большие различия в количестве рук, которые они сыграли с выбранными нами ставками. Один исключительный игрок участвовал примерно в 765 000 раздач (0,17% нашей выборки), в то время как 58,9% всех игроков участвовали в менее чем 100 раздачах. Степень концентрации высока: один процент самых активных игроков сыграл 58,5 процента всех рук, а 12,0 процента сыграли 90 процентов. Скорее всего, многие из нечастых игроков были активны на других уровнях ставок, кроме трех, указанных здесь.

В таблице 1 также представлена ​​статистика выигрышей игроков как до, так и после вычета «рейка» (комиссии, взимаемой оператором). Чтобы сравнить и объединить статистику результатов по уровням ставок, выигрыши масштабируются по размеру большого блайнда. Например, прибыль в 5 больших блайндов соответствует прибыли в 50 долларов на высоких ставках и 1,25 доллара на низких. Чтобы также учесть разницу в количестве сыгранных рук, результативность выражается как количество выигранных больших блайндов на 100 рук (bb / 100). Например, игрок, который выиграл 20 долларов при большом блайнде 2 доллара после розыгрыша 400 рук, достиг производительности 2,5 bb / 100.

В среднем игроки теряли 104 bb / 100 после начисления рейка. Этот средний винрейт намного хуже, чем соотношение среднего общего количества проигранных больших блайндов (49) и сыгранных рук (746), или 6,6 bb / 100. Разница объясняется положительной зависимостью между прибыльностью игрока и количеством сыгранных им рук. Это соотношение может отражать эффект опыта, но также может быть следствием бюджетных ограничений, которые становятся препятствием после убытков.

Рейк существенно влияет на выигрыш игроков. Если раздача не завершена в первом раунде торговли («префлоп»), оператор берет фиксированный процент (5% по нашим данным) из банка с фиксированным номинальным лимитом, который зависит от количества игроков за столом. . Только 32 процента всех игроков в нашей выборке достигли положительного общего результата после вычета рейка. На самом деле этот процент немного выше: игроки могут легко участвовать в схемах вознаграждения и получать бонусы на депозит, которые частично компенсируют это, и они могут заключать так называемые «рейкбэк-сделки» с аффилированными лицами оператора.

Для нашего анализа роли навыков в производительности мы вносим поправку на рейк, потому что мы не хотим, чтобы наши результаты были обусловлены структурой рейка, используемой оператором. Рейк не является неотъемлемым элементом игры, и процентные ставки и ограничения на разных сайтах различаются. Более того, как объяснялось выше, размер рейка, который фактически платит игрок, не является наблюдаемым.

Чтобы скорректировать выигрыши игроков на рейк, мы возвращаем рейк пропорционально их вкладам в банк. В среднем рейк снижает производительность игроков на 16 бб / 100 в нашей выборке. В результате фиксированного номинального лимита влияние рейка на выигрыш игроков больше в играх с меньшими ставками. Без рейка 37,5% всех игроков получили бы прибыль. Крайние значения для лучшего и худшего винрейта в таблице были зафиксированы для удачливых и неудачливых игроков, сыгравших только одну или две руки.

Децильные анализы

При нулевой гипотезе о том, что покер - это только азартная игра, нет никакой связи между результатами игрока в разные подпериоды. В качестве альтернативы, если навыки играют существенную роль в игре в покер, мы могли бы ожидать, что результаты игрока в одном конкретном подпериоде будут показывать его результаты в более поздних подпериодах. В этом разделе мы подразделяем игроков на децили на основе их результатов в первые шесть месяцев нашего периода выборки и исследуем, как играли игроки в этих децилях за последние шесть месяцев. В следующем разделе мы рассмотрим устойчивость и предсказуемость производительности с помощью регрессионного анализа.

Наш период выборки охватывает двенадцать месяцев подряд. Мы разделили наши данные на подвыборки октябрь 2009 г., март 2010 г. и апрель сентябрь 2010 г. и ранжируем различных игроков по децилям в соответствии со средним количеством больших блайндов, которые они выиграли за раздачу в течение первого периода (период «рейтинга»). Поскольку небольшие наборы рук могут давать очень шумные индикаторы, мы отфильтровываем игроков, сыгравших менее 1000 рук в течение этого рейтингового периода. В результате остается выборка из 17 257 игроков для малых ставок, 16 435 для средних и 2 725 для высоких. В общей сложности 36 570 игроков приняли участие в 1000 или более рук на трех уровнях вместе взятых. В среднем они сыграли по 5706 рук (медиана: 2245). Следующий,мы исследуем среднюю производительность различных децилей игроков за второй шестимесячный период (период «измерения»). Чтобы предотвратить эффекты выбора, мы не налагаем ограничений на количество рук в этом периоде измерения. Как объяснялось в предыдущем разделе, результаты рук корректируются с учетом рейка и масштабируются в соответствии с размером большого блайнда.

В таблице 2 показаны результаты для трех отдельных уровней ставок (панели A, B и C) и для трех уровней вместе взятых (панель D). Левая часть таблицы включает среднюю производительность (в bb / 100) для каждого дециля за период ранжирования (Период 1), а правая часть показывает, насколько хорошо каждый дециль показал себя за период измерения (Период 2). Обратите внимание, что децили включают меньше игроков в период измерения, чем в период ранжирования. Игроки либо перестали играть в какой-то момент, либо двигались вверх или вниз по ставкам, либо просто не попадали в нашу историю рук. Для трех уровней ставок вместе из 36 570 игроков, сыгравших не менее 1000 рук в течение первых шести месяцев, подгруппа из 20 632 также была активна в течение последующих шести месяцев. В среднем игроки этой подгруппы сыграли 7038 рук в первом периоде (медиана: 2,526) и 4814 (медиана: 717) во втором.

Вкратце, результаты в Таблице 2 показывают, что наблюдается существенная и значительная устойчивость результатов: децили игроков, которые в среднем показали относительно хорошие результаты в первом периоде, продолжали делать это во втором периоде. Результаты для отдельных уровней ставок в целом аналогичны результатам для трех уровней вместе взятых, поэтому наше обсуждение ниже в основном сосредоточено на агрегированной выборке.

Сначала мы обсудим результаты, в которых децильная эффективность за период измерения рассчитывается как невзвешенная средняя производительность по игрокам. В целом игроки из децилей с более высоким рейтингом превосходят игроков из децилей с более низким рейтингом. Например, средний игрок из верхнего дециля для трех уровней ставок вместе потерял 23,0 бб / 100, в то время как средний игрок из нижнего дециля потерял 42,5 бб / 100; разница в 19,5 bb / 100 статистически значима ( t = 3,12; p = 0,002). Для всех децилей ранговая корреляция Спирмена между средними децильными показателями в период ранжирования и в период измерения незначительна ( ρ = 0,600; p= 0,073). На уровне индивидуальных ставок коэффициент корреляции незначительно отличается от нуля для малых ставок и незначительно значим как для средних, так и для высоких ставок.

Невзвешенное среднее значение за период два отрицательно для всех десяти децилей. Этот результат связан с равным весом, присвоенным каждому игроку при расчете децильной результативности. Количество сыгранных ими рук в Период 2 сильно различается между игроками; это число колеблется от 1 до 622 936. Поскольку бюджетные ограничения могут вынудить игрока прекратить игру при накоплении проигрышей, отрицательный средний результат неудачной последовательности рук с меньшей вероятностью будет отменен или разбавлен последующими руками, чем положительный результат после серии удач. Следовательно, на уровне игроков отрицательные средние результаты более вероятны, чем положительные средние показатели. Действительно, игроки, сыгравшие относительно мало рук в Период 2, имеют более низкие оценки: те, кто сыграл менее 100 рук (18,9% всех активных игроков), получили оценку -79,9 bb / 100,остальные (81,1%) - в среднем -4,6 барр. / 100.

Существенная доля игроков, сыгравших относительно мало рук в период измерения, также может объяснить, почему корреляция на уровне децилей между средними показателями в периоде ранжирования и измерения является лишь незначительно значимой. Измерения производительности для нечастых игроков относительно шумны, и их сильно различающиеся оценки, следовательно, искажают силу корреляции. Фактически, игрокам, сыгравшим всего несколько рук, придается сомнительно большой вес, когда децильная эффективность выражается как прямое среднее значение по игрокам. Использование средневзвешенного значения с количеством рук игроков в качестве весов позволит избежать этой проблемы, и поэтому мы предлагаем эту меру в качестве альтернативного индикатора. Это средневзвешенное значение идентично средней прибыльности за руку для всех рук, сыгранных игроками в дециле вместе взятых.Поскольку игроки, которые играли нечасто, вряд ли отражаются в этой альтернативной оценке, мы также рассматриваем компромиссный метод взвешивания, который использует в качестве весов квадратные корни из количества рук игроков.

Оценка на основе двух средневзвешенных показателей эффективности усиливает наблюдаемую картину. Игроки из децилей с более высоким рейтингом снова превосходят игроков из децилей с более низким рейтингом в Периоде 2. Например, руки, сыгранные игроками из верхнего дециля, принесли прибыль 5,1 бб / 100 по всем уровням ставок, в то время как руки, сыгранные игроками из нижних децилей, лидируют. к потере 5,9 bb / 100 (разница: 11,0 bb / 100; t = 12,36; p ρ ≥ 0,733 , п≤ 0,021). Обратите внимание, что производительность периода измерения является положительной для большинства децилей, когда количество рук игроков используется в качестве весов. Это поразительно, потому что, по определению, средний выигрыш за руку равен нулю для всех рук в нашей нефильтрованной выборке. Очевидно, игроки, сыгравшие 1000 или более рук в предыдущие шесть месяцев (и, таким образом, удовлетворяющие нашему критерию отбора), играли более прибыльно, чем другие. Это само по себе может означать, что опыт в этой игре окупается.

Устойчивость результатов также проявляется в том, как игроки в данном децильном ранге по сравнению со всеми другими игроками в Периоде 2. Последний столбец Таблицы 2 показывает, что игроки из децилей с более высоким рейтингом обычно занимают более высокие места, чем игроки из децилей с более низким рейтингом. Например, для всех уровней ставок, вместе взятых, средний ранг игроков из верхних децилей составляет 10 135 (из 20 632), а у игроков из нижних децилей - 12 098.

На уровне отдельных игроков сила корреляции между рангами игроков Периода 1 и Периода 2 довольно умеренная. Коэффициент корреляции колеблется от 0,074 (для малых ставок) до 0,104 (для средних ставок). Относительно низкая степень корреляции по сравнению с коэффициентами корреляции на уровне децилей отражает релевантность дисперсии результатов на индивидуальном уровне - в частности, дисперсии для игроков, сыгравших лишь несколько рук в периоде 2. Однако статистически ранг корреляция на уровне отдельных игроков очень значима для каждой (под) выборки (все p

В качестве проверки устойчивости мы также провели аналогичные анализы, в которых в качестве периода ранжирования и измерения использовались три месяца вместо шести, при этом мы разделили годичный период выборки на четыре непересекающихся квартала (1 квартал = октябрь - декабрь 2009 г., 2 квартал = Январь - март 2010 г., 3 квартал = апрель - июнь 2010 г. и 4 квартал = июль - сентябрь 2010 г.). Независимо от пары последовательных кварталов, которые мы используем для ранжирования и измерения, мы наблюдаем ту же модель устойчивости, что и раньше: децили более высокого ранга обычно превосходят децили более низкого ранга. Опять же, корреляции сильнее, когда мы уменьшаем влияние относительно нечастых игроков, вычисляя результативность как средневзвешенную, а на уровне отдельных игроков ранговая корреляция всегда очень значима.

До сих пор мы ранжировали игроков на основе их среднего результата по большим блайндам. Несмотря на простоту и естественность, этот подход игнорирует важность различий между игроками в количестве сыгранных ими рук. Мало кто разделяет мнение о том, что игрок, выигравший 500 больших блайндов за 1000 рук (50 bb / 100), должен считаться более эффективным игроком, чем тот, кто выиграл 40 000 больших блайндов за 100 000 рук (40 bb / 100). Одним из недостатков предыдущего подхода является то, что он не учитывает основное статистическое правило, согласно которому выборочное распределение среднего зависит от размера выборки ( n i): чем больше количество наблюдений, тем меньше вероятность того, что среднее значение принимает экстремальное значение. Например, если мы рассмотрим двух игроков с равными способностями из большей совокупности, игрок, который участвует в меньшем количестве рук, с большей вероятностью будет отнесен к одному из верхних или нижних децилей, если игроки ранжируются по их среднему выигрышу за руку. . Точно так же предыдущий подход не учитывает различия в стиле игры или стандартное отклонение выигрышей ( s i ): когда два игрока одинаково прибыльны, более предприимчивый игрок с большей вероятностью попадет в одну из двух крайностей рейтинга. .

Поэтому мы предлагаем альтернативную меру для ранжирования игроков, которая учитывает количество рук и стиль игры отдельного игрока ( i ): (1) где BB i - сумма выигранных больших блайндов (до вычета рейка), s i - это сумма выигранных больших блайндов (до вычета рейка). стандартное отклонение выигранных больших блайндов, а n i - количество сыгранных рук. Мы называем эту меру «мерой устойчивости производительности» (PRM). Фактически, PRM i равен t- значению теста наблюдаемой производительности игрока в сравнении с нулевой гипотезой о нулевой ожидаемой производительности.

В таблице 3 представлены новые результаты. Учет стиля игры и количества рук в рейтинговом периоде усиливает предыдущие свидетельства стойкости результатов. Децили игроков, занимающих более высокое место по PRM iобычно лучше, чем децили с более низким рейтингом. Новый метод ранжирования оказывается более точным: во многих случаях эффективность дециля в периоде 2 теперь идеально или почти идеально монотонно возрастает с рангом дециля периода 1. Например, для агрегированных данных показатель Ранговая корреляция идеальна, когда децильная эффективность Периода 2 измеряется количеством рук игроков в качестве весов. Для каждого уровня ставок ранговая корреляция результатов на уровне отдельного игрока также сильнее. Новые коэффициенты примерно на два-четыре процентных пункта больше и находятся в диапазоне от 0,091 (небольшие ставки) до 0,148 (средние ставки). Дополнительные анализы с трехмесячным периодом дали аналогичные результаты.

Другой способ посмотреть на устойчивость производительности - через вероятности перехода. В таблице 4 показаны вероятности перехода по децилям результатов для игроков, сыгравших 1000 или более рук в течение первых шести месяцев периода нашей выборки. Эти игроки дважды ранжируются на основе их результатов: для периода 1 и периода 2. Вероятности в таблице указывают на эмпирическую вероятность перехода от данного дециля в первом полугодии к данному децилю во второй половине. -летний период. Игроки, за которых у нас нет наблюдений за второй период, не включаются в рейтинг за второй период, поэтому по существу вероятность зависит от участия во втором полугодии.

В Панели А мерой эффективности, которая используется для ранжирования игроков, является стандартный показатель эффективности (bb / 100) после поправки на рейк. Доля игроков в верхнем дециле Периода 1, которые попадают в верхний дециль в Период 2, составляет 13,6%; игроки, которые находятся в худшем дециле, оказываются в худшем дециле в 19,6% случаев. Эти эмпирические вероятности существенно больше, чем значение в 10 процентов, которое можно было бы ожидать при нулевой гипотезе об отсутствии постоянства производительности (все p

На панели B игроки ранжируются на основе их PRM i.. Результаты убедительны: игроки из верхнего дециля снова появляются в этом дециле в 20,7% случаев, и с вероятностью 5,4% они относительно редко оказываются в нижнем дециле. Точно так же проигравшие вряд ли станут победителями: десять процентов худших из десяти процентов в следующие шесть месяцев попадают в число лучших десяти процентов в следующие шесть месяцев только в 5,2 процента времени, а среди самых худших десяти процентов - в 18,5 процентах случаев. Эмпирические вероятности еще более красноречивы, когда мы смотрим на процентили (не табулированные): один процент лучших игроков периода 1 входит в число самых лучших игроков периода 2 в 11,4 процента случаев, а среди лучших десяти процентов 32,8 процента. процентов времени (в 11,4 и 3,3 раза больше базовой ставки). Они входят в число 10% худших только в 3,4% случаев. Сходным образом,наименее успешные игроки периода 1 часто продолжают работать плохо: наихудший процентиль остается в этой категории в 10,2% случаев и относится к наихудшему децилю в 32,0% случаев. Они редко опережают результаты: лучший дециль достигается только в 2,7% случаев.

Регрессионный анализ

Для дальнейшего анализа роли навыков мы регрессируем результативность за последние шесть месяцев нашей выборки по результатам за первые шесть месяцев и по другим показателям, которые могут служить прокси-показателями навыков. Мы рассматриваем следующие объясняющие переменные:

  • - SPM : стандартный показатель результативности или «винрейт», определяемый как среднее количество больших блайндов, выигранных за сотню раздач после поправки на рейк.
  • - PRM : показатель устойчивости игры, определяемый как среднее количество больших блайндов, выигранных за раздачу после поправки на рейк, деленное на расчетную стандартную ошибку. Предполагаемая стандартная ошибка - это выборочное стандартное отклонение выигрыша с поправкой на рейк на руку, деленное на квадратный корень из числа рук.
  • - Руки (журнал) : натуральный логарифм количества сыгранных рук. Эта переменная является показателем опыта игроков и, следовательно, возможным показателем мастерства.
  • - Тайтовость : единица за вычетом доли рук, в которых игрок добровольно поставил деньги в первом раунде торговли («коллировал или повысил на префлопе»). Степень тайтовости - это одна из двух простых мер, которые обычно используются для общей классификации стилей игры игроков. Обычно считается, что более тайтовая игра указывает на более сильного игрока. Распространенные ошибки в покере - нетерпеливый поиск «действий» и переоценка прибыльности розыгрыша данной руки.
  • - Агрессивность : количество раз, когда игрок делал ставку («ставка» или «повышение»), пропорционально общему количеству раз, когда игрок добровольно ставил деньги («ставка», «колл» или «повышение»). Этот фактор - еще один из двух простых критериев стиля игры. Обычно считается, что агрессивная игра дает более высокие ожидаемые результаты, чем пассивная игра, потому что увеличение стоимости игры в нужное время может вынудить других игроков отказаться от более сильных карт или заключить больше ставок с более слабыми.
  • - Турниры : рейтинг турнирных способностей игрока согласно SharkScope, веб-сайту, который отслеживает практически все результаты онлайн-турниров по покеру. Наихудший возможный рейтинг - 50, а наилучший - 100. SharkScope не разглашает точный расчет. Результативность турнира является возможным показателем мастерства из-за большого сходства между турнирами и кэш-играми.

Последние три переменные стандартизированы таким образом, что их среднее значение равно нулю, а стандартное отклонение равно единице. Чтобы избежать проблем эндогенности, все шесть независимых переменных основаны исключительно на данных, полученных до Периода 2: первые пять охватывают предыдущие шесть месяцев (Период 1), а рейтинг турнирных возможностей определяется за предыдущие двенадцать месяцев. Рейтинг турнирных способностей был доступен для 79 процентов игроков, сыгравших 1000 или более рук в обычном периоде 1.

Мы запускаем два набора регрессий: один для стандартной меры производительности, а другой - для нашей меры устойчивости. В первом случае мы сталкиваемся с проблемой гетероскедастичности: дисперсия члена ошибки пропорциональна выборочной дисперсии количества выигранных больших блайндов () и обратно пропорциональна количеству сыгранных рук ( n i ) в Период 2. Поэтому мы применяем взвешенный метод наименьших квадратов (WLS) для оценки этих регрессионных моделей, где весовой коэффициент является обратной величиной дисперсии члена ошибки (). Когда наша мера устойчивости производительности является зависимой переменной, мы используем обычный метод наименьших квадратов (МНК), потому что ошибки там имеют постоянную дисперсию по построению.

Панель A таблицы 5 представляет результаты WLS для стандартного показателя производительности. В каждой одномерной регрессии производительность в значительной степени связана с прокси навыком из предыдущего периода (все p

Мы получаем качественно аналогичные результаты, когда используем нашу меру устойчивости производительности (панель B), но теперь объяснительная сила выше. Процент отклонения, объясняемый совместными показателями навыков, составляет 8,1 процента, что примерно в 2,5 раза выше, чем эмпирическое соответствие предыдущей многомерной спецификации. Мы также провели регрессионный анализ отдельно для трех уровней ставок. Результаты и выводы аналогичны результатам для совокупной выборки.

Хотя эти результаты подтверждают наши более ранние выводы об устойчивости результатов и роли навыков в покере, основная часть отклонений в результатах остается необъясненной моделями и, по-видимому, объясняется случайностью. Проблема, которую мы еще не рассмотрели в явном виде, - это проблема ошибок в переменных. В идеальной ситуации мы бы знали точный уровень навыков каждого игрока, но, учитывая отсутствие этой информации, мы должны использовать шумные прокси. Когда объясняющие переменные измеряются неправильно, коэффициенты, оцененные с помощью стандартных методов регрессии, смещаются в сторону нуля, а истинная объясняющая сила недооценивается. Низкое эмпирическое соответствие регрессионных моделей указывает на то, что ошибка измерения является серьезной проблемой для исторических показателей производительности: если случайный фактор объясняет большую часть вариации производительности,любое измерение предыдущей производительности также, вероятно, будет подвержено большой степени случайности. (Обратите внимание, что переменные стиля игры измеряются с относительно небольшой ошибкой, потому что они основаны на большом количестве ничьих из биномиального распределения. Их относительно низкая предсказательная сила, по-видимому, особенно связана с их более косвенным отражением навыков.)

Смещение оцененного коэффициента к нулю в результате ошибки измерения известно как ослабление или регрессионное разбавление . Хотя ошибка измерения не является проблемой для прогнозного моделирования, она может дать несправедливое представление о величине влияния навыка на производительность здесь и может ошибочно предполагать, что навыки игрока не являются стабильным качеством во времени. Поэтому для учета ошибки как в зависимой, так и в независимой переменной мы также запускаем так называемую регрессию Деминга [17–19] (методологические подробности см. В приложении S1). Результаты показывают, что стандартная регрессия в значительной степени занижает размер влияния навыка на производительность: когда мы регрессируем процент побед периода 2 на процент побед периода 1, мы получаем коэффициент 1,392 (р p p

Недооценка истинной объяснительной силы навыка как следствие ошибки измерения уменьшается с увеличением количества рук, используемых для вычисления прокси для навыка. При большем количестве наблюдений ошибка измерения становится относительно менее важной: соотношение дисперсии ошибки измерения и дисперсии истинной независимой переменной уменьшается с увеличением количества рук. Это справедливо для каждого из двух исторических показателей эффективности. Для стандартной меры производительности дисперсия ошибки измерения уменьшается с увеличением количества рук. Для показателя устойчивости производительности дисперсия ошибки измерения является постоянной (равной единице), но для этого показателя увеличение количества рук приводит к более заметным различиям между игроками с различным ожидаемым винрейтом,уменьшение относительного размера ошибок измерения.

Чтобы проиллюстрировать влияние количества наблюдений на игрока на эмпирическое соответствие, мы запускаем регрессии для объединенных результатов «команд» игроков. Точнее, мы сначала ранжируем игроков на основе их результатов в Период 1. Затем мы группируем игроков по процентилям, где один процент лучших игроков формирует группу, второй лучший процент - другую группу и так далее. Затем для каждого процентиля мы вычисляем результативность за период 1 и период 2 для всех рук игроков в группе вместе взятых. Наконец, мы регрессируем объединенную производительность за период 2 на объединенную производительность за период 1. Средний гипотетический «игрок» сейчас сыграл около 2,1 миллиона рук в Период 1 (вместо 7 038) и 1,0 миллион в Период 2 (вместо 4 814). Результаты замечательные. Когда производительность выражается как процент побед,R 2 составляет 66,7 процента, а при использовании показателя устойчивости производительности R 2 составляет 80,1 процента.

Мы завершаем этот раздел анализом устойчивости. Чтобы убедиться, что задокументированное постоянство производительности действительно отражает роль навыков, нам необходимо убедиться, что результаты не обусловлены различиями в бюджетных ограничениях между игроками. Как уже объяснялось в предыдущем разделе, ограничение бюджета может вынудить игрока прекратить игру при накоплении проигрышей, и, следовательно, отрицательный результат с меньшей вероятностью будет отменен или разбавлен последующими руками, чем положительный результат. Чем сильнее бюджетные ограничения игрока в начале данного периода, тем больше вероятность того, что ему потребуется остановиться на раннем этапе после убытков, и тем ниже ожидаемые SPM и PRM за этот период. Различия в бюджетных ограничениях между игроками могут быть определены как экзогенно, так и эндогенно:некоторые игроки могут просто иметь меньшие фиксированные бюджеты для игры, чем другие в каждый период, и игроки, проигравшие в предыдущий период, имеют меньше средств на своих счетах, чем игроки, которые выиграли. В обоих случаях одновременная связь между силой бюджетного ограничения и производительностью может привести к ложной корреляции между результатами игроков во времени.

Чтобы избежать возможного влияния бюджетных ограничений, мы используем образцы рук фиксированного размера для каждого игрока. Для n = 1 000, 5 000 и 10 000 мы выбираем всех игроков, сыгравших не менее 2 n рук за весь период выборки, и проверяем, влияет ли результативность первых n рук на результаты следующих n рук.

Результаты регрессии приведены в Таблице 6 и указывают на то, что постоянство производительности устойчиво к этой альтернативной спецификации. Независимо от n и независимо от того, какой из двух показателей производительности используется, производительность вторых n рук существенно зависит от производительности первых n рук (все p